优势型号:MT41J256M16RE-15EIT MT41J256M16RE-15EIT :D
封装:TFBGA-96
批次:13+
芯片类型:4GDDR3
现货供应商:深圳市凌旭科技有限公司
联系人:张艳平(女士)
联系电话:0755-82797778 13692179527
联系地址:深圳市福田区振兴西路华匀大厦二栋507室(即深圳市华强北电子市场高科德附近)
接上篇:FPGA将在4G系统中占重要地位
2、远程射频单元
RRU功能包括一个具有数字信号处理功能的收发器卡、射频转换、功率放大器、双工器和低噪声放大器(LNA)的射频前端。收发器卡的设计往往是宽带的,在无线标准和工作频带之间有80-90%之间的元器件通用性。
FPGA的可重构特性允许软件无线电(SDR)技术支持多种无线标准,如WCDMA、WiMAX以及通用基带的LTE。对于MIMO天线系统,该单元必须为每根天线提供一个发射器和接收器对。
下一代网络将比目前部署的网络运行的频率高得多,通常会超过2GHz,此外还需提供更高的数据传输率。主要的RRU设计问题是功耗和射频功率放大器的成本。大信号峰值平均功率比(PAPR)要求功率放大器传送的更大功率。虽然这种情况很少发生,但设计必须实现这个功能,这将导致更高的成本。射频晶体管在大功率时呈现非线性,将造成信号失真和带外发射。大信号峰值平均功率比和4G系统非线性的共同影响,可能导致功率放大器将只运行在其总输出功率的20~30%,整个效率只有10~15%。而GSM功率放大器的运行可达到100%利用率和高达70%效率。对于这个问题的解决办法,是在最后的功率放大器前预先处理这个信号。这种方式最终使得放大的射频信号具有最佳的性能。在这一过程中可以使用两种方法:振幅因子缩小(CFR)和数字预失真(DPD)。
波峰因子缩小工作原理是智能地限制功率放大器输入的最大波形振幅,因此产生峰值输出功率。这有效地降低了这个信号的PAPR,同时保持所需信号的精确度和频谱特性。在低功耗或微型基站中,如WiMAX或Picocell,可以采用它而无需DPD。
另一方面,通过应用一种使输入信号失真的方式,DPD能够使功率放大器线性化。这种方式考虑了功率放大器的传输特性,因此使任何信号失真无效,这是功率放大器的特性导致的。在射频输出功率大于1~2瓦的大功率系统中,它通常与CFR相结合。
在RRU中使用CFR 和 DPD技术,可以让系统工程师使用比采用其他技术更低成本的功率放大器。这两种方法都需要大量的DSP处理功能,以实现行必要的算法。最重要的是,它们还要求一定的可适性,因为它们需要适应功率放大器传输特性的任何变化,这种变化可能发生在温度和时间变化的情况下。
RRU内远程无线处理器的合并是对这个问题的解决方案之一。传统上,ASIC被广泛用于蜂窝基站的设计,但是它们的设计周期长、固定成本高且不灵活,不适合仍在不断发展的市场。对于这个问题,分立的DSP处理器似乎是另一个解决方案,但分析表明,在多种标准的基站实现方面,它们也有局限性。另一方面,具有嵌入式DSP单元、SerDes功能和软处理器的FPGA在一个可重构的芯片中提供所有的功能。这个器件就是莱迪思半导体公司的ECP3。对任何带有SERDES功能的FPGA器件而言,这个FPGA具有业界最低的功耗和价格。该系列产品提供遵守XAUI抖动标准的多协议3.2G SERDES、DDR1/2/3存储器接口、功能强大的DSP功能和高密度的片上存储器。与带有SERDES功能的FPGA相比,所有这些功能只需竞争产品的一半功耗和一半价格。
不过,在选择FPGA时必须要认真考虑,以满足系统的物理和性能参数要求。获得实现RRU的关键功能的IP核,对整个系统的解决方案而言至关重要。作为IP合作伙伴计划的一部分,莱迪思公司与拥有丰富蜂窝无线系统经验的Affarii公司一起致力于该项工作。LatticeECP3 FPGA 与Affarii的IP结合在一起,提供了一个灵活的平台,可以在FPGA架构中组合构建RRU所需的所有IP模块。针对发送和接收,RRU处理器的功能是多路复用和调制这个信号数据到射频载波。