APSC6R3EC3561MH08S
深圳市骏创达科技有限公司
电话:0755-83251645
企业QQ: 2881479206
网址:www.jcd168.com
地址:深圳市福田区上步工业区501栋4楼412室
据MIT Technology Review报道,在无人驾驶卡车和出租车上路之前,制造商们需要解决一个比防撞和导航复杂得多的问题。下面就随汽车电子小编一起来了解一下相关内容吧。
这些车辆将不得不预见并抵御恶意攻击者的侵扰,这些人同时使用传统网络攻击手段和基于所谓“对抗性机器学习”的新式攻击方法。随着越来越多的人一致认为,无人驾驶汽车只需要几年时间就会出现在城市里(比如机器人出租车)和高速公路上,以缓解长途卡车司机的无聊感。然而,这种攻击风险在很大程度上却在铺天盖地的覆盖报道中被忽略。
这不禁让我想起了上世纪90年代早期推广电子邮件的大量文章,当时这种新兴电子通讯领域还未被垃圾邮件所充斥。那时,机器学习被看作是解决世界垃圾邮件问题的方案之一。事实上,今天的垃圾邮件问题在很大程度上已被解决,但我们花了几十年的时间才实现这个目标。
目前还没有黑客针对无人驾驶汽车发动袭击的报道。但具有讽刺意味的是,这的确是一个问题。在20世纪90年代,互联网初创公司开发了首批电子商务平台时,也没有恶意攻击者。在第一轮电子商务黑客袭击发生之后,比尔·盖茨(Bill Gates)给微软写了一份备忘录,要求公司认真对待安全问题。结果,如今的Windows成为世界上最安全的操作系统之一,微软每年在网络安全上的花费超过10亿美元。尽管如此,黑客还是不断发现Windows操作系统、网络浏览器和应用程序的漏洞。
汽车公司很可能也会经历类似的过程。20世纪80年代设计的“CAN总线”(CAN bus)未能考虑安全性问题,这个失败让人们普遍感到尴尬,因为当时还没有验证的概念,现在他们似乎在关注此事。当黑客们证明,道路上的车辆很容易受到几个特定安全威胁的影响时,汽车制造商只能通过召回并升级数百万辆汽车的固件应对。去年7月份,通用汽车公司首席执行官玛丽?巴拉(Mary Barra)表示,保护汽车免受网络袭击的影响“事关公共安全”。
但迄今为止所做的努力可能正错过下一个安全趋势。无人驾驶汽车的开发依赖于复杂的机器学习算法,但计算机视觉和防撞系统却没有被很好地理解。去年,美国卡内基-梅隆大学的研究人员证明,使用一副透明的眼镜,并在镜框上印上时髦的图案,就可以击败最先进的人脸识别算法。
APSC6R3EC3561MH08S
APXE160ARA221MHA0G
APSF160EC3471MJB5S
EKY-101ELL471MLN3S
EKY-101ELL471MLN3S
EMVY6R3ARA332MKG5S
EMVY6R3ARA332MKG5S
APSF160ETD471MJB5S
APSG160ETD271MF08J
EKXJ401ELL470ML20S
APSF160ETD471MJB5S
APSF160EC3471MHB5S
APSE6R3ETD561MF08S
APSF160EC3471MHB5S
APSF160ETD471MJB5S
APSG160ETD271MF08J
APSG160EC3271MF08J
APSC6R3ETD152MJB5S
APSE6R3ETD561MF08S
APSF160ETD471MJB5S